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Outline

I. The SNS Facility and Ion Source Requirements

II. The Berkeley H- Ion Source

III. Performance of the Berkeley Source at Low and High 
Duty Factor

IV. The Development of the SNS External Antenna Source

V. Other R&D Directions – New Cs Collars, etc.
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The Spallation Neutron Source 

www.sns.gov
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SNS Ion Source Requirements

Year 
Needed

Beam 
Current 
(LEBT)

Duty Factor
(Pulse Length, 

Rep. Rate)

Emittance 
RMS-

Normalized
Run Period

SNS Baseline 
Operation
(1.4 MW)

2008 ~40 mA 7% 
(1.2 ms, 60 Hz)

< 0.2 π mm 
mrad

0.25-0.35  π
mm mrad

21 days

SNS Power 
Upgrade
(3+ MW)

2009-
2011

75-100 mA 7% 
(1.2 ms, 60 Hz)
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2002 Survey of H- Ion Sources

DESY-HERA

BNL-AGS

ANL-IPNS
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INR-MMF
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Multicusp
surface

converter

Penning

Multicusp
filament

Multicusp
RF

Magnetron

- R.F. Welton, “Overview of High-brightness H- Ion 
Sources”,  LINAC02, Gyeongju, Korea

In routine use at major facilities or extensively commissioned
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The LBNL-SNS Ion Source

Multicusp 
magnets

Gas inlet

Filter magnets

H- beam

Dumping 
electrode

Dumping 
magnetsPlasma

Cs collar
8 Cs2CrO4 
dispensers 
loaded into 
the collar

RF antenna 
2 + 13 MHz
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Source Performance at Low-Duty Factor: 
Accelerator Commissioning 

Delivered 
Beam 

Currents

Typical Beam 
Duty-Factors

Length 
of 

Comm. 
Period

Ion Source 
Availability 

Source 
related 
issues

Front End Re-
Commissioning

10-50 mA

10-45 mA

DTL 4-6 & CCL 1-3 
Commissioning

10-50 mA ~0.1% ~50 days 99.6%
•LEBT water 
leak
•RF feed 
cable

~0.1% ~40 days

10-40 mA

•LEBT 
insulators
•RF Amplifier

DTL 1-3 
Commissioning

~0.1% ~90 days

86%

95%
•Coated 
water lines
•RF amplifier

99.8%SCL
Commissioning 

~0.02% ~90 days •LEBT 
chopper 
short
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Performance at High Duty-Factor: 
Endurance Runs on the Ion Source Test Stand

Enclosed high voltage 
platform 

Ion source cage
LEBT tank and vacuum pumps

AC distribution

Emittance scanner and Faraday cups

2 MHz matching network

Optical spectrometer for
plasma diagnostics  

Lockable fence 

Residual gas
spectrometer

Epics Controls 

Welton et al, RSI 75 (2004) 1793
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Early High-Duty Factor Test Runs

Experimental runs at full duty factor and maximum beam current 
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Each run only 
lasted a few 
days due to 
an average 
beam decay 
rate of ~5 
mA/day
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Data Analysis

Surface Production
( Requires Cs  accounts for 30-40 mA)

Some background…How is H- produced in the source?

H-

H+, H
Cs

e-

H2(ν>0)
H

H-

Volume Production
(accounts for ~10mA in SNS source)

During each run an optical spectrometer monitored plasma density
which was found to be constant.  This suggests a problem with surface 
production → Cs distribution.

Each Cs dispenser contains a compressed powder mixture of Cs2CrO4, 
Al and Zr (St101®) which release Cs though these reaction pathways:

4 Cs2CrO4 + 5 ZrY8 Cs (g) + 5 ZrO2+2 Cr2O3

6 Cs2CrO4 + 10 AlY12 Cs (g)+ 5 Al2O3+3 Cr2O3

Thus if elemental Zr and Al become depleted Cs will not be released!
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Computational thermodynamic analysis (HSC) shows that free Zr and Al will 
form stable (and useless) compounds with residual gases evolved from the 
source during source conditioning at temperatures greater than ~250 C. 

The new operating procedure is simple:  Fully condition the source to full 
duty factor before raising the Cs collar temperature above 250 C!

Residual Gases Evolved During Source Conditioning 
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Data Analysis
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Each run employed the new source conditioning technique

Later High-Duty Factor Test Runs
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Run #8 ran for 11 days and was 
terminated to accommodate 
other experiments. Average 
beam current was 30mA.

Run # 8 Run #9 ran for 16 days with an 
average beam current of 33 mA 
and a 0.5 mA/day beam 
attenuation rate.  85 million 
pulses with only 5 trips!
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The SNS External Antenna H- Source  

A significant development but does not yet 
meet the SNS requirements….

DESY has shown a several year source lifetime at ~40 mA
but with low duty factor 0.1% (~50W plasma) – no antenna 
issues!!

Can an external antenna source like the one employed at 
DESY be adapted for use in high-power source applications 
like the SNS (~3500W plasma)?

To answer this question we designed and tested a simple 
external antenna module which replaces the internal antenna 
in the LBNL source ….
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The External Antenna Module

Simple air-cooled chamber with a six-turn 
high-inductance antenna with no magnetic 
plasma confinement   

Backflange

Cu RF antenna

O-ring

Al2O3
plasma 
chamber

O-ring

1 cm

Multicusp 
magnets

Electron dump

Cs collar

Filter magnets

Dipole dumping
magnets

ions

Antenna cavity

Air / water 
inlet

Stainless steel 
Plasma chamber 
holder
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Initial Test of the External Antenna

Status:
Highest beam current produced to date by any uncesiated ion source in our 
lab: 32 mA!

Unable to sustain H- pulses longer than ~150 us (the DESY operating point)
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The Hollow Anode Electron Gun
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By injecting electrons directly into the source plasma we 
hope to stabilize the plasma for longer pulses > 150 us and 
enhance plasma density
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External Antenna with Hollow Anode E-gun…Beam Current?

BCM: 2A / V 

• Result not surprising since supplemental injection of electrons into 
ECR sources (biased disk, wall coating, electron guns) have greatly 
improved source performance.

• In the literature, supplemental injection of electrons into H- RF-driven 
plasma sources remains largely unexplored.

H- current (BCM) versus RF power (E-gun and 13 
MHz)
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• H- pulses of up to 51 mA have been produced in 200 us pulses!   A 
50% increase over the non-injected source – no Cs employed.
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400 μs / div 

2 MHz RF match: 84% 
Beam pulse droop at 50 SCCM H2 Flow: ~60%

Beam pulse droop at 80 SCCM H2 Flow: 30%

• Full 1.2 ms pulses 
achieved!

• Excessive droop 
observed

Matching network: not tuned 

External Antenna with Hollow Anode E-gun…Long pulses?
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What is the Lifetime of the Hollow Anode E-gun?
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Given the success of the E-gun 
we asked our student, Jerry Carr, 
to design and fabricate a test 
stand capable of monitoring the 
extracted electron flux
Current run: 18 days – no current 
degradation ~72 mA!

High voltage enclosure

Video display of the electron stream

Power supplies

All parameters logged to Laptop 

Sample Data



20

What about High Duty-Factor Operation….

• Operation at full duty-factor imposes a 3.6 kW heat load on chamber which 
cannot be cooled by air alone.

• Chamber failed twice with air cooling at 1.2 ms / 40 Hz / 30 kW or a heat load 
of 1.4 kW as predicted by modeling.

• Submerging antenna in de-ionized water resulted in a ~50% decrease in 
beam current.

• Initial tests of a metallic Faraday shield were successful after modification…

Produced ~ 8 mA (~84% decrease) Produced ~ 40 mA (~20% decrease)
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Lessons Learned and a New Source Design….

• Antenna cavity clearance → increasing gaps for higher inductance antennas 
(better RF coupling) and reduced antenna arcing 

• Magnetic plasma confinement → should improve source performance likely 
reducing the ~30% droop observed with 1.2 ms pulses

• Heat management of plasma chamber → required for high duty-factor operation 
→ currently limited to 1.4 kW out of 3.6 kW of plasma heating insufficient for 
cesiation

New version of the SNS External Antenna Source

ions
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New Design…Antenna Cavity Clearance

• We increased the radial cavity dimension to maximum while still utilizing the 
LBNL outlet aperture, Cs collar, filter field, e-dump magnets.

• Gap increased from 0.4 to 1.0 inch 

Antenna Cavity

Plasma Chamber

ions
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• We have already shown that with stainless steel fingers 
inserted into the plasma chamber we can produce 40 mA of H-.  
Why not incorporate multicusp magnetic confinement into 
water-cooled fingers which also serves as a Faraday shield?  

• How good could this confinement scheme be? 

New Design…Magnetic Confinement

Multicusp fingers Water manifold
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• If we magnetize the magnets in the azimuthal direction rather than the 
conventional radial direction and properly shaping pole faces an N=12 
multicusp configuration can be achieved using only 6 magnets!
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• Provides comparable confinement with the LBNL 
source: B(max) = 2600G and 3000 versus 2200 G.

• B at antenna is <100G 
• Confinement extends over full plasma length 

including extraction region!

New Design…Magnetic Fields
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New Design…Heat Management

• The 3.6 kW plasma heat source is considerable and the following 
measures must be taken together to manage this heat load:

– Chamber enlarged to reduce heat flux: surface area increase → 56% 
increase in surface area.

– Water cooled multicusp assembly serves as a Faraday shield → ~50% 
transparency

– Water/Fluorinert rapidly flows over the outer surface of the plasma 
chamber in a thin plastic water jacket – glass reinforced Delrin.

Water 
jacket ions
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New Design….Temperature and Stress Distributions

• Alumina has a compressive strength of 3 GPa and 
a tensile strength of 0.3 GPa

• Von Mises stress within margin Safety factor ~15

von M is e
σMi (109N

1 .5 2 0

1 .3 6 8

1 .2 1 6

1 .0 6 4

0 .9 1 2

0 .7 6 0

0 .6 0 8

0 .4 5 7

0 .3 0 5

0 .1 5 3

0 .0 0 1

Max stress 0.2 GPa

Thermal and Mechanical 
stress distribution

All o-ring surfaces < 100 C

Tem pe
T (K )

1 3 9 .

1 2 7 .

1 1 5 .

1 0 3 .

 9 1 .

 7 9 .

 6 7 .

 5 5 .

 4 3 .

 3 1 .

 2 0 .

Temperature distribution

Full duty-factor 
operation!
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New Design….Overall Assembly

O-ring

O-ring

• Highly modular design 
allows individual 
optimization of each 
subsystem

• Water flows through 
multicusp array via the 
end cap manifold

• Ceramic plasma chamber 
is loaded in compression 
only.

• The electron gun will be 
affixed to Std. 1.25”
Cajon fitting to the rear 
of the source

• Matrix supports new 
source concepts like the 
Helicon plasma generator

• Status: Assembly 
drawings done, layouts 
being made. 

ions
Water 
manifold

Plasma 
chamber

Multicusp magnets

Water 
jacket
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Other Source Development Efforts 

• Continuing Lifetime Tests of LBNL Source
• Developing New Cs Collars 
• Developing High-Field Extraction System as 

employed at DESY, FNAL, JAERI, KEK, BNL, 
etc. (not discussed today)

• Helicon Plasma Generators with FED                       
(not discussed today)

Risk is mitigated by pursuing several 
alternative approaches….. 
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New Cs Collars
Motivation: Current Cs collar is not optimized (indirect Cs transfer), does not meet 
the SNS requirement and only supports ~3 cesiations.  Development benefits both the 
internal and external antenna sources

Progress: We are developing Cs collars with enhanced geometry, 
temperature distributions and Cs sources
Details: RF Welton et al., AIP Conf. Proc. 763 (2005) p 296

10 
mm

• Employs a conical 
ionization surface 
which extends into 
outlet aperture

• Larger emittance 
observed

Enhanced geometry: Integrated Cs Collar / Outlet Aperture

60 mA pulse 
averaged

70 mA peak 
current

At full duty 
factor
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New Cs Collars

• Design allows complete and 
independent temperature 
control of T1 & T2 (30-650 C) 

• Produced ~50 mA with T1 = 
211C and T2 = 585C at 1.2 ms 
in spite of damaged antenna

T1

T2

Enhanced Temperature Distributions:

Direct-Transfer Collar

New

Used

Cs 
chromate

X-ray diffraction analysis 
shows a complete absence 
of Cs chromate after ~3-4 
cesiations in original LBNL 
Cs collar: need a better Cs 
source!

Improved Cs source: 

External Cs Reservoir 
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New Cs Collars – Combining best features

• Does not depend on the complex and delicate chemistry of the Cs2CrO4 – Zr3Al2 –
Zr5Al3 system

• Based on Fermi Lab magnetron Cs oven which operates reliably for 6+ month intervals

• Status – system being 
constructed
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• New Cs collars have already produced beams of 60 mA at full duty-factor 7% but at 
the cost of unacceptable emittance growth using the internal antenna source.

Outlook
• At low duty-factor (<1%), the LBNL ion source continues to meet the commissioning 

goals of the SNS Accelerator with availability increasing from eased from 86% to 
99% for the last commission period.

• At full duty-factor (7%), a new source conditioning procedure has resulted in an 
order-of-magnitude improvement in beam persistence allowing beams of excess of 
30 mA to be delivered continuously for ~16 days from the original LBNL source.  
Previously, beams of this level could only be sustained for periods of several hours.

• The SNS external antenna module and hollow anode E-gun have produced  51 mA of 
H- without any plasma confinement or use of Cs.  Cs typically increases H- output 2-
3 fold.  Issues of long-pulse, high duty-factor and Cs-enhanced operation are being 
addressed in a new source configuration which has been designed and will be 
tested shortly.

• Overall – It seems likely that given the 1-2 year time window to meet the SNS 
operational requirement of 40mA at 7% we will achieve this.  Meeting the SNS power 
upgrade goal of 75-100 mA at 7% in the 3-5 years window will be a considerably 
more challenging requiring more funding and effort.  


